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Initially, we asked whether it was possible to identify corals 
that are resistant or sensitive to such conditions by compil-
ing quantitative measures of their phenotypic traits deter-
mined through empirical studies, but we found only weak 
phenotypic discrimination between ecological winners and 
losers, or among taxa. To reconcile this outcome with eco-
logical evidence demonstrating that coral taxa are function-
ally unequal, we looked beyond the notion that phenotypic 
homogeneity arose through limitations of empirical data. 
Instead, we examined the validity of contemporary means 
of categorizing corals based on ecological success. As an 
alternative means to distinguish among functional groups of 
corals, we present a demographic approach using integral 
projection models (IPMs) that link organismal performance 
to demographic outcomes, such as the rates of population 

Abstract Many tropical corals have declined in abun-
dance in the last few decades, and evaluating the causal 
basis of these losses is critical to understanding how coral 
reefs will change in response to ongoing environmental 
challenges. Motivated by the likelihood that marine envi-
ronments will become increasingly unfavorable for coral 
growth as they warm and become more acidic (i.e., ocean 
acidification), it is reasonable to evaluate whether specific 
phenotypic traits of the coral holobiont are associated with 
ecological success (or failure) under varying environmen-
tal conditions including those that are adverse to survival. 
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growth and responses to environmental stress. We describe 
how IPMs can be applied to corals so that future research 
can evaluate within a quantitative framework the extent to 
which changes in physiological performance influence the 
demographic underpinnings of ecological performance.

Introduction

Rising concentrations of atmospheric carbon dioxide (CO2) 
from the burning of fossil fuels have resulted in global cli-
mate change (GCC) that has increased global sea surface 
temperatures (SST) and perturbed the carbonate chemis-
try of seawater, thereby reducing the surface pH of oceans 
[i.e., ocean acidification (OA) (Kelly and Hofmann 2012)]. 
These changes have many biological consequences known 
best for their negative implications, such as the physiologi-
cal stress associated with high temperature (Harley et al. 
2006; Hoegh-Guldberg and Bruno 2010; Somero 2010), 
and in the marine environment, reduced skeletal accretion 
(e.g., calcification) and perturbed respiration and photosyn-
thesis associated with OA (Hofmann et al. 2010; Rodolfo-
Metalpa et al. 2011). The potential implications of these 
effects are serious, for within 100 years, atmospheric pCO2 
is projected to increase from 39 Pa to between 49.6 and 
85.1 Pa (van Vuuren et al. 2011), thereby increasing SST 
0.3–2.1 °C (depending on the climate change scenario) and 
reducing pH of the open ocean by 0.3 units (Feely et al. 
2009; Sokolov et al. 2009; Kirtman et al. 2013). Relatively 
little is known of the effects of these conditions on coastal 
marine ecosystems, including coral reefs.

OA and elevated temperature are among the most promi-
nent threats to ocean ecosystems (Hughes et al. 2003; 
Hoegh-Guldberg et al. 2007), and their interactive effects 
may represent an evolutionary impasse to the survival of 
tropical reefs as coral-dominated, calcifying systems (Sil-
verman et al. 2009; Wild et al. 2011; Anthony et al. 2011). 
While it has rapidly become clear that the responses of cor-
als to OA and thermal stress, individually or interactively, 
are not uniform among species (Loya et al. 2001; Pandolfi 
et al. 2011; Comeau et al. 2013), progress in understand-
ing the causal basis of this variability has been slow. There 
are exceptions to this generality, notably with molecular 
genetic tools, for example, being used to clarify cellular 
function (Meyer et al. 2011; Miller et al. 2011), host tax-
onomy (Forsman et al. 2009; Stat et al. 2012), and the roles 
of Symbiodinium genotypes in affecting holobiont biology 
(Hennige et al. 2009; Putnam et al. 2012; Yuyama et al. 
2012). There is a clear need for more information in order 
to understand the factors promoting coral success in the 
face of environmental challenges.

Corals have been categorized into functional groups 
based on the performance for at least four decades, with 

two of the earliest studies partitioning corals by relative 
dependence on autotrophy and heterotrophy (Porter 1976) 
and degree of digestive aggression (Lang 1973). These 
studies began a period of phenomenological approaches 
to differentiating among corals based on phenotypic traits. 
This interest has re-emerged in the twenty-first century in 
efforts to categorize corals in ways that are insightful to 
understanding the causes and consequences of declines in 
coral cover (Loya et al. 2001; Darling et al. 2012, 2013), 
as well as declines that occurred prior to current concerns 
over climate change (Cramer et al. 2012). The renewed 
interest initially focused on approaches similar to the r-K 
life history classification of Stearns (1977), with the debate 
crystallizing around whether coral species can be catego-
rized as “winners” or “losers” (Loya et al. 2001), or display 
“weedy” or “non-weedy” life history strategies (Knowlton 
2001). This discussion is acquiring sophistication with, 
for example, studies partitioning hundreds of coral species 
among four life history strategies based on up to 11 fea-
tures (Darling et al. 2012), or categorizing them as gener-
alists or specialists based on the genetic diversity of their 
Symbiodinium (Fabina et al. 2012; Putnam et al. 2012). 
Other studies have characterized vulnerable and resistant 
corals on extant and fossil reefs based on key traits gener-
ated from the opinions of experts (van Woesik et al. 2012), 
disease-susceptible and disease-resistant corals based 
on mostly categorical traits (Diaz and Madin 2011), and 
bleaching-susceptible and bleaching-resistant corals based 
on mass transfer effects (van Woesik et al. 2012; see Pat-
terson 1992).

While the aforementioned studies demonstrate that cor-
als can be classified into functional groups, most studies 
have relied heavily on categorical data, which overlooks 
the resolution that can be obtained from continuous data 
available in the primary literature (Edmunds et al. 2011 
and reinforced below). More importantly, virtually all 
studies of functional groupings of scleractinians provide 
no mechanism by which trait values can be scaled across 
the complex landscape of organismic biology to affect 
population-specific processes such as birth rates, death 
rates, longevity, and fecundity. These demographic prop-
erties are the best means through which the ecological 
successes of corals can be codified and quantified. With 
greater understanding of the causal basis of the afore-
mentioned demographic properties, it should be possible 
to construct a mechanistic understanding of the effects of 
physical environmental conditions on the growth of coral 
populations. Madin et al. (2012a) provide one example in 
which demographic traits are linked to coral performance, 
and their analysis modeled lifetime reproductive output of 
Acropora hyacinthus as a function of the effects of seawa-
ter flow and OA on colony dislodgement, photosynthesis, 
and respiration.
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Here, we advocate a demographic construct for scle-
ractinian corals that provides an explicit means to couple 
organismic performance to ecological success. Similar 
approaches have been applied in other systems (Violle et al. 
2007), for example, phytoplankton (Litchman and Klaus-
meier 2008) and bighorn sheep (Coulson et al. 2005), but 
have received little attention in studies of scleractinians (but 
see Burgess 2011; Madin et al. 2012a, b). Coupling physi-
ological phenotypes to demographic properties is central 
to understanding the mechanistic basis of ecological suc-
cess and, in the case of scleractinians, to predict which cor-
als might function as ecological winners when faced with 
anthropogenic assaults. Arguably, understanding the causal 
basis of ecological success (and failure) among scleractin-
ians on contemporary reefs is the most important objective 
to advance efforts to forecast the structure and function of 
coral reefs in the future.

We have structured our paper into two parts. First, we 
outline our efforts using existing continuously distrib-
uted data from the primary literature to characterize the 
phenotypes of scleractinian holobionts (i.e., the animal 
host plus the consortia of single-celled taxa they contain, 
including Symbiodinium dinoflagellates), and in so doing, 
underscore the current limitations to accomplishing this 
goal. Second, we describe how the well-developed tools 
of integral projection models (IPMs) can provide insights 
into trait-based explanations of ecological success. In 
conclusion, we identify key research areas critical to 
understanding and projecting coral assemblages in a 
future differing from recent times in a variety of physical 
conditions.

Step 1: Assessing contemporary data

After decades of limited attention, the ecophysiology of 
tropical scleractinians has become a focus of research 
attention. In the 1970s and early 1980s, there was strong 
interest in coral ecophysiology (Muscatine et al. 1981; 
Dubinsky et al. 1984; Gladfelter 1985), and toward the 
end of this period, widespread coral bleaching maintained 
interest in this discipline (Glynn 1993; Gates and Edmunds 
1999). Although attention waned in the 1990s, the ecophys-
iology of tropical reef corals is now being studied in great 
detail to evaluate the effects of GCC and OA on reef corals 
(Gattuso et al. 1998; Hofmann and Todgham 2010; Lesser 
2013). Consequently, there is nearly a century of legacy 
data describing the ecophysiology of corals, with quan-
titative studies beginning as early as the 1920s (Vaughn 
1914; Yonge and Nicholls 1930; Wellington et al. 2001). 
Not unsurprisingly, however, a century of research spans a 
wide range of methodological and technological sophisti-
cation, as well as paradigm shifts in comprehension of the 

functional biology of this taxon (Lesser 2004; Davy et al. 
2012).

One of the most profound changes in understanding of 
the biology of tropical reef corals has involved the discov-
ery of high genetic diversity among their Symbiodinium 
symbionts (Rowan and Powers 1991; LaJeunesse et al. 
2010; Stat et al. 2012) and an expansion of the notion of 
symbiosis in the Scleractinia to embrace microbes (Lesser 
et al. 2004; Apprill et al. 2009). These symbionts can have 
a striking effect on the physiology of the holobiont (Lesser 
et al. 2004; Jones et al. 2008; Putnam et al. 2012), and 
through changes in their genetic assemblages, can play 
important roles in the capacity of corals to improve their 
tolerance of environmental stress (Jones et al. 2008; Bas-
kett et al. 2009; Gates and Ainsworth 2011). In the present 
study, we address the advantages to be gained by applying 
IPMs to reef corals, and do so by focusing on the physi-
ology and ecology of the holobiont as an emergent prop-
erty of its interactions with symbionts. This should not be 
construed to mean that variation in the genetic variants of 
the Symbiodinium (or microbial flora) is unimportant in the 
application of IPMs to corals, rather it recognizes the cur-
rent state of empirical research necessary to achieve this 
goal. We note however that the effects of varying Symbiod-
inium type ultimately can be included in the IPM construct, 
essentially in the same way as any other variable that is 
important in determining demographic traits.

In 2009, we first became interested in the ecophysiol-
ogy of reef corals when we sought empirical data to inform 
dynamic energy budget (DEB) models for scleractinians 
(Muller et al. 2009), and to test the aspects of coral biology 
that have become deeply engrained in the fabric of this dis-
cipline (e.g., depth-dependent reductions in growth rates) 
(Edmunds et al. 2011). Our initial effort included data for 
73 species from 126 studies, yet it provided only weak sup-
port for apparently well-established patterns of variation 
in coral phenotypes among differing physical conditions 
and dissimilar taxa (Edmunds et al. 2011). Given the well-
established differences we wished to test for general appli-
cation, it seemed unlikely that the results of our analyses of 
compiled data reflected ecological reality. Rather, we sus-
pected that our null results were a product of methods that 
differed among studies, as well as of outdated perspectives 
of the ways in which biological properties might differ 
among functionally dissimilar groups of corals. Outdated 
perspectives are common in older literature, because, for 
example, early studies overlooked the importance of seawa-
ter flow to coral biology (Patterson 1992) and the genetic 
variation hidden within Symbiodinium symbionts (Pochon 
and Gates 2010). We returned to compiling ecophysiologi-
cal data for scleractinians in 2010 when we sought to eval-
uate the fate of corals in warmer and more acidic seas, and 
our compilation supported the hypothesis that some corals 
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are functioning as ecological winners while others around 
them are less successful (i.e., are losers) (sensu Loya et al. 
2001). Further, a trait-based analysis of coral performance 
over ecological (i.e., on extant reefs) and geological time 
(i.e., the fossil record) revealed that the evolutionary fate 
of coral species was largely independent of taxon. We 
inferred, therefore, that the fate of corals was more strongly 
dependent on holobiont phenotypes than taxonomy, and 
subsequently implemented a modeling effort to evaluate the 
features of winning and losing corals in a phenotype-based 
construct (Edmunds et al. 2014).

The present paper originated as an effort to use empiri-
cal data describing coral phenotypes to codify our general 
phenotype-based model projecting present-day reefs into 
a future of warmer and more acidic seas (Edmunds et al. 
2014). Conceptually, we intended to select corals identified 
as ecological winners or losers based on changes in their 
absolute and relative abundance on contemporary reefs 
between 1981 and 2010 (Edmunds et al. 2014), and then 
define their phenotypes based on continuously distributed 
measurements of select traits. Our objective was to use the 
ecological categories and their corresponding phenotypic 
properties as parameter values in a population model from 
which we could evaluate emergent properties of the popu-
lation. The phenotypic properties of corals were defined by 
12 traits that are widely available in peer-reviewed litera-
ture: calcification (µmol CaCO3 cm−2 h−1), chlorophyll-a 
content (µg cm−2), linear extension (mm year−1), lipid con-
tent (mg cm−2), mitotic index (%), polyp density (polyps 
cm−2), protein (mg cm−2), Symbiodinium density (cells 
cm−2), tissue thickness (mm), total biomass (mg cm−2), 

dark aerobic respiration (µmol O2 cm−2 h−1), and maxi-
mum rate of photosynthesis (µmol O2 cm−2 h−1) (Table 1). 
We used these data to assess phenotypic differences among 
groups of corals exemplifying the functional group concept 
for this taxon (e.g., Loya et al. 2001). We first contrasted 
massive Porites spp. and Acropora spp. that represent the 
concept of ecological winners and losers, respectively 
(Loya et al. 2001; van Woesik et al. 2011), and rejected the 
null hypothesis of no difference between taxa for six traits 
(biomass, tissue thickness, linear extension, photosyn-
thesis, chlorophyll-a, and calcification; t > 2.222, df ≥ 9, 
P ≤ 0.034); six additional traits did not differ between 
these genera (t ≤ 0.917, df ≤ 44, P ≥ 0.128). The weak 
phenotypic discrimination among coral taxa that have been 
extensively studied for the select traits was revealed when 
they were clustered based on similarities generated from 
all 12 traits (Fig. 1). Hierarchical clustering was conducted 
(with Primer 6 software) using Gower similarity of group 
averages based on maximum standardized mean trait val-
ues across genera. Similarity profile permutations tests 
(SIMPROF) identified no statistically significant clusters 
(π = 1.315, P = 0.8). Even though the database had grown 
4.6-fold for all records of the aforementioned traits com-
pared to our previous work (Edmunds et al. 2011; Elec-
tronic Supplementary Material 1) and is now focused on 6 
genera, we were unable to show that ecologically distinct 
taxa differed in terms of their multivariate phenotypes.

The inability to link empirical trait values to ecological 
success in reef corals prompted a re-evaluation of the crite-
ria used to define winning and losing corals, and the utility 
of linear reasoning to couple trait values with performance. 

Table 1  Compilation of 12 phenotypic traits that are widely available in peer-reviewed literature for the six most commonly studied genera

Traits are calcification (µmol CaCO3 cm−2 h−1), chlorophyll-a content (µg cm−2), linear extension (mm year−1), lipid content (mg cm−2), mitotic 
index (%), polyp density (polyps cm−2), protein (mg cm−2), Symbiodinium density (×106 cells cm−2), thickness (mm), biomass (mg cm−2), dark 
aerobic respiration (µmol O2 cm−2 h−1), and maximum rate of photosynthesis (µmol O2 cm−2 h−1) for Acropora, Goniastrea, Orbicella (for-
merly Montastraea), Montipora, Pocillopora, and Porites. Trait values (mean ± SE [n]) were used to support a cluster analysis (Fig. 1) illustrat-
ing similarities among these genera

Trait Acropora Goniastrea Orbicella Montipora Pocillopora Porites

Calcification 0.56 ± 0.12 (28) 0.41 ± 0.03 (2) 0.35 ± 0.12 (2) 0.20 ± 0.05 (6) 0.39 ± 0.04 (26) 0.29 ± 0.03 (53)

Chlorophyll-a 2.23 ± 0.46 (9) 14.78 ± 4.50 (6) 10.23 ± 1.13 (30) 18.38 ± 4.99 (9) 5.08 ± 1.17 (14) 8.08 ± 1.62 (23)

Linear extension 109.5 ± 17.7 (19) 6.0 ± 0.8 (8) 6.6 ± 0.6 (17) 17.7 ± 6.8 (5) 50.0 (1) 12.1 ± 0.5 (127)

Lipid content 2.56 ± 0.71 (4) 8.00 ± 3.00 (2) 2.04 ± 0.24 (2) 4.43 ± 1.21 (3) 0.17 (1) 5.44 (1)

Mitotic index 2.68 ± 0.72 (10) 0.28 (1) 4.43 ± 0.66 (9) 1.20 ± 0.30 (2) 2.59 ± 1.81 (2) 3.52 ± 0.56 (10)

Polyp density 70.2 ± 18.3 (6) 5.3 ± 1.6 (3) 3.9 ± 1.0 (11) 158.5 (1) 71.2 ± 15.7 (5) 65.2 ± 2.8 (32)

Protein 3.70 ± 0.30 (2) 5.05 ± 0.35 92) 2.40 ± 1.36 (6) 3.83 ± 0.81 (6) 0.26 ± 0.04 (8) 2.47 ± 0.87 (8)

Symbiodinium density 6.65 ± 4.44 (32) 2.66 ± 0.90 (6) 2.69 ± 0.40 (13) 1.55 ± 0.38 (8) 0.97 ± 0.28 (6) 5.98 ± 3.41 (14)

Tissue thickness 1.60 ± 0.30 (3) 3.20 ± 0.40 (2) 0.24 ± 0.01 (11) 0.90 (1) 0.65 ± 0.25 (2) 5.26 ± 0.26 (47)

Tissue biomass 3.08 ± 0.91 (8) 16.10 (1) 7.68 ± 0.77 (24) 7.48 ± 0.48 (2) 1.83 ± 0.33 (2) 12.51 ± 2.03 (8)

Respiration 0.37 ± 0.09 (7) 0.74 ± 0.04 (2) 0.79 ± 0.15 (26) 0.82 ± 0.27 (3) 1.68 ± 0.71 (4) 0.62 ± 0.12 (8)

Photosynthesis 1.00 ± 0.11 (5) 3.24 ± 0.07 (2) 2.61 ± 0.34 (19) 3.30 ± 0.34 (3) 4.75 ± 1.69 (4) 2.55 ± 0.55 (6)
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This re-evaluation identified four important constraints on 
progress toward characterizing ecological success in corals, 
or more generally, phenotypically characterizing ecologi-
cally meaningful functional groupings of corals:

1. Defining winners and losers based on changes in abun-
dance (percent cover or number of colonies) provides a 
poor indicator of ecological performance measured in a 
demographic currency.

2. The relationships between fine-scale physiological 
traits, coarse-scale coral characteristics (e.g., differ-
ences among genera or morphologies), and ecological 
responses are complex and nonlinear.

3. There is no theoretical construct for scleractinians to 
inform a mapping of fine-scale physiological traits 
onto coarse-scale coral characteristics, particularly in 
the context of multivariate physical forcing.

4. Synthesis of phenotypic data for scleractinians is 
impeded by a lack of more uniform methodology, com-
mon units, and effective model taxa that can be used to 
generate continuously distributed values of physiologi-
cal traits.

Step 2: A demographic approach for coupling 
organismic performance to ecological success in the 
scleractinia

The benefits of a demographic approach to identifying 
winning and losing corals

The extent to which scleractinian corals achieve ecologi-
cal success (i.e., win) or failure (i.e., lose) ultimately will 

be reflected in their population dynamics. Therefore, prin-
ciples of population persistence derived from population 
models (Caswell 2001) can be applied to this task. Specifi-
cally, over ecological time, populations of winning and los-
ing corals should be defined by population growth rates that 
are above and below replacement, respectively. Each adult 
must, on average, replace itself with one offspring during 
its lifetime in order to function as a “winner.”

Models of coral populations often have derived popula-
tion growth from age- or stage-structured representation 
of population dynamics using (standard or modified) Les-
lie matrices, which contains information on age- or stage-
dependent survival and reproduction (e.g., Hughes 1984; 
Fong and Glynn 1998, 2000; Hughes and Tanner 2000; 
Edmunds and Elahi 2007). In Leslie matrices, the param-
eter defining population growth without density depend-
ence is given by the dominant eigenvalue of the matrix, 
denoted as λ (Caswell 2001). Once the population achieves 
a stable age/stage distribution (indicated by the eigenvector 
corresponding to the eigenvalue λ), the population grows or 
shrinks by a constant factor (i.e., λ) at each time interval. 
In a currency that is mechanistically related to “ecological 
success,” winning corals can therefore be defined rigor-
ously by λ > 1 and losing corals by λ ≤ 1 (Caswell 2001). 
A demographic approach to defining ecological success 
offers advantages over common measures of abundance 
(like percentage cover), which are related only loosely 
to demographic processes (Hughes and Tanner 2000; 
Edmunds and Elahi 2007; Darling et al. 2013). Stable 
coral cover can, for example, hide impending population 
decline (Hughes and Tanner 2000), and categorizing corals 
based on changes in cover (Loya et al. 2001; Edmunds et 
al. 2014) has the potential to generate functional groupings 
with equivocal ecological relevance.

The potential utility of a demographic approach to com-
paring ecological success among coral species can be seen 
in other biological systems where similar approaches have 
been applied. λ has a strong history as a means to evalu-
ate population performance and viability (Caswell 2001), 
with examples coming from many taxa as diverse as grizzly 
bears (Mace and Waller 1998), whales (Fujiwara and Cas-
well 2001), spotted owls (Noon and Biles 1990), ungulates 
(Coulson et al. 2005), sea turtles (Crowder et al. 1994), 
precious octocorals (Bramanti et al. 2009), Tasmanian dev-
ils (Lachish et al. 2007), and plants (Ramula et al. 2008; 
Crone et al. 2011). In terrestrial plants, for example, much 
demographic data are available to assess the patterns and 
process of population growth. Buckley et al. (2010) synthe-
sized demographic models having both spatial and tempo-
ral replication from 50 species, with multiple populations 
(≥2) per species and multiple matrices (≥2) per popu-
lation. They identified the species for which population 
growth rates declined through time, as well as the sources 

100

90

80

70

60

50

A
cr

op
or

a

P
oc

ill
op

or
a

G
on

ia
st

re
a

M
on

tip
or

a

M
on

ta
st

ra
ea

P
or

ite
s

S
im

ila
ri

ty

Fig. 1  Hierarchical clustering dendrogram based on mean values for 
12 traits obtained for 6 coral genera that have been reported in peer-
reviewed literature and linked to stress responses (Online Supplemen-
tary Material 1). Hierarchical clustering is based on Gower similarity 
of group means of maximum standardized mean trait values across 
genera (PRIMER v6; Clarke and Gorley 2006) where nodes show 
similarity groupings
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of variation in population growth rates among species. 
Temporal variation in population growth rates was mostly 
due to variation in post-seedling survival (rather than adult 
fecundity), herbivory, and fire (Buckley et al. 2010). An 
analysis such as that utilized by Buckley et al. (2010) could 
be used to good effect with tropical reef corals, specifically 
to identify ecological winners and losers in communities 
exposed to disturbances such as storms, predatory sea stars, 
thermal stress, and OA.

Compared to research in other systems, demographic 
studies on corals are rare. Only a handful of studies have 
quantified λ (e.g., Hughes 1984; Hughes and Tanner 2000; 
Edmunds and Elahi 2007; Edmunds 2011; Hernández-
Pacheco et al. 2011; Madin et al. 2012b), despite long-
standing efforts to promote demographic analyses of this 
important taxon (Connell 1973; Hughes and Jackson 1985; 
Hughes 1996). The implications of the scarcity of studies 
on the demography of scleractinian corals are now being 
felt acutely as biologists focus on determining which corals 
might function as winners or losers, as well as the causal 
basis of these outcomes, in an era of strong effects of GCC 
and OA (Hoegh-Guldberg 2012). While there are several 
studies that associate ecological success with mean trait 
values (Darling et al. 2012, 2013), or model the influence 
of environmental and biological traits on fecundity (Madin 
et al. 2012a), most efforts have favored phenomenological 
links among the functional levels and have not explicitly 
addressed the conditions favoring population persistence 
(e.g., those involving λ).

Integral projection models (IPMs) for corals

A promising way to integrate organismal-level perfor-
mance with population-level outcomes is through an inte-
gral projection model (IPM [Easterling et al. 2000; Coul-
son 2012]). IPMs evaluate the role of continuous traits in 
driving population dynamics and create the potential to 
scale up the effects of GCC and OA on individual-level 
performance to evaluate population-level consequences. 
IPMs are an extension of discrete time, discrete age/stage 
models based on the Leslie matrix. While Leslie matrices 
are based on discrete classes, IPMs accommodate continu-
ous classes or states (e.g., continuously distributed size) in 
a predictive framework (in discrete time, as in the Leslie 
matrix). IPMs share many of the features that have made 
matrix projection models popular: estimation of population 
growth (λ), state-specific reproductive values, the stable 
population phenotypic distribution, and identification of the 
parameters to which λ is most sensitive. Furthermore, IPMs 
are a better representation of transient dynamics than tradi-
tional discrete matrix models, because demographic rates 
change in a gradual, rather than abrupt, manner across an 
organism’s life history. IPMs also perform better for small 

datasets (<300 individuals) than traditional matrix models 
because they require fewer parameters to describe vital 
rates of a population’s growth, which are integral in the 
calculation of λ (Ramula et al. 2008). To date, IPMs have 
not been applied widely to scleractinians (but see Burgess 
2011; Madin et al. 2012b), or to other “corals” (i.e., octoc-
orals, Bruno et al. 2011).

We describe how IPMs can be used to identify winning 
and losing corals as well as the physiological traits driving 
these ecological outcomes (Fig. 2; Box 1). The IPM is a 
relatively well-developed technique, and it is not our goal 
to provide a comprehensive description of the theory and 
mechanics of IPMs. Furthermore, the flexibility of con-
structing the IPM means that we would do it injustice if 
we set about providing a simple “recipe.” Therefore, we 
assume the reader has some familiarity with IPM meth-
odology and assumptions (e.g., as described in Easterling 
et al. 2000; Ellner and Rees 2006, 2007; Rees and Ellner 
2009; Coulson 2012); without this basic knowledge, the 
flexibility of IPMs may give the wrong impression that 
they are complicated. Finally, we note that any difficul-
ties involved with obtaining the necessary data for apply-
ing IPMs to corals should not detract from the importance 
of assessing winning and losing corals in a demographic 
framework.

The simplest representation of an IPM involves a 
description of the number of individuals n(y,t + 1) at 
time t + 1 with a given state y as a product of the num-
ber of individuals n(x,t) at time t with state x and a kernel 
k(y,x,θ(t)) representing all possible transitions from state x 
(in time t) to state y (in time t + 1) under the environment 
θ(t), integrated over all states x:

The kernel, k(y,x,θ(t)), is analogous to the projection 
matrix (e.g., Leslie matrix). While there is flexibility in 
the mathematical definition, it is typically expressed as 
the fecundity f(x,y,θ(t)) of individuals of state x producing 
those of state y plus the product of the survival s(x,θ(t)) of 
those in state x and the growth g(x,y,θ(t)) from state y to 
state x:

θ(t) describes the environment as it affects growth, 
fecundity, and survivorship. In essence, the functions 
describe how individuals with states enter the popula-
tion (through birth and immigration), leave the population 
(through death and emigration), and how the state of an 
individual changes though time (e.g., growth from one time 
step to the next causing a transition between size classes). 
The functions can be generated from statistical models fit 
to empirical data and, therefore can be linear, nonlinear, 

(1)n(y, t + 1) =
∫

k(y, x, θ(t))n(x, t)dx.

(2)k(y, x, θ(t)) = f (x, y, θ(t)) + s(x, θ(t))g(x, y, θ(t)).
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n(y, t + 1) = [k(y,x,θ(t))n(x,t)dx
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Fig. 2  Schematic illustrating the application of an integral projec-
tion model (IPM) to corals to link holobiont physiology, individual 
colony-level performance (i.e., survival, growth, and fecundity), and 
population-level (demographic) outcomes (i.e., population growth, 
λ) as a function of environmental factors (θ). The population is struc-
tured by colony states [y] (e.g., colony size), which vary among indi-
vidual corals. The colony state of each individual determines the indi-
vidual’s fecundity (f), growth/fission (g), and survival (s), generating 
the kernel elements (k(y,x,θ(t))) of the IPM. In this example, physi-
ological traits [a, b, c, etc.], and environmental factors [θ]), determine 
vital demographic rates (i.e., kernel elements) through their effects on 
the colony states. Physiological traits can affect the multiple kernel 
elements independently or interactively through multiple pathways. 
Shown here for clarity is just the effect of attributes such as biomass, 

protein content, and Symbiodinium clades on colony growth. We dis-
play the relationships in each kernel for two sets of environmental 
conditions (θhigh and θlow, e.g., high and low water temperature) for 
illustration, but environmental conditions can be discrete or continu-
ous. Kernel elements are used to evaluate population growth (λ), from 
low population density, as a function of environmental conditions and 
physiological traits (“Demographic analyses”). Additional analyses 
can determine the sensitivity and elasticity of the population growth 
factor to changes in the parameters defining the kernels; refer to text 
and Box 1 for further details. *This term is replaced with r(x,y) in an 
open population. a, b, c,.. etc., a variety of physiological traits and 
functional attributes that can affect demographic rates, n number of 
colonies, y size of colony at time (t) t + 1, x = size of colony at time t
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additive, or nonadditive, or derived from mechanistic mod-
els (e.g., DEBs, Edmunds et al. 2011) explicitly modeling 
how energy is converted into growth and fecundity (Fig. 2). 
Growth can be measured in ways most relevant to the 
morphology and physiology of the study species, and can 
include linear extension, change in surface area, increase in 
biomass, or calcification. The fecundity kernel incorporates 
all the processes from larval release to recruitment.

In the mathematical terms implementing how the envi-
ronment affects growth, fecundity, and survivorship, previ-
ous representations of IPMs (e.g., Rees and Ellner 2009) 
have implemented θ(t) as stochastic environmental vari-
ation based on the distribution of data around growth, 
fecundity, and survivorship relationships. To understand 
the response of corals to future environmental change, 
however, θ(t) might represent a predictably changing envi-
ronmental variable that influence these kernel elements. 
For example, if θ(t) is a representation of OA (e.g., pCO2), 
then it might alter the growth rate through time, while θ(t) 
representing temperature might affect how a temperature-
dependent change in symbiont density or genetic compo-
sition influences bleaching susceptibility. Under multiple 
environmental changes, θ(t) then becomes a vector where 
each element represents a different aspect of the environ-
ment. To illustrate this overall approach, we provide an 
example that connects coral size distribution dynamics to 
OA in Box 1.

Incorporating physiology into a coral IPM

Coral physiological characteristics (Table 1), or any other 
types of coral characteristics that connect environmental 
change to coral colony performance, can enter into the IPM 
in a number of ways (Box 1 is just one example). For phys-
iological traits that vary among populations or species, the 
trait for a given population or species might drive the shape 
of the IPM kernel (e.g., faster growth for corals in habi-
tats allowing faster calcification) and allow comparison of 
expected coral dynamics among populations or species. In 
this case, the physiological trait is a property of the whole 
population (or species) and it modifies the parameters that 
define the kernel elements for that population. For exam-
ple, coral populations in shallow water may have a different 
genetic compliment of Symbiodinium than coral popula-
tions in deeper water. If Symbiodinium composition alters 
the slope of the colony growth function (or any other func-
tion in the kernel elements), then the effects of changing 
Symbiodinium composition on the dynamics of multiple 
populations (or species) can be predicted.

For traits that vary continuously within populations (i.e., 
among individuals), the physiological trait can enter into 
the IPM in a number of ways. The trait itself might be a 
component of the state y, in addition to size, that directly 

affects survival, growth, or fecundity, such that the model 
captures the joint distribution of colony size and that trait 
in the population. In such a case, for example, survival, 
growth, or fecundity might vary depending on the popu-
lation density or genetic variation in the endosymbiotic 
Symbiodinium and, therefore, would also be influenced by 
interactive effects with a variety of other factors includ-
ing seawater temperature and colony size. Another way in 
which the physiological trait can enter into the IPM is by 
its indirect affects with colony size. For example, Madin et 
al. (2012a, b) modeled a size-structured coral population 
with environment-dependent reductions in calcification that 
reduced skeletal density, which in turn decreased the sur-
vival of larger colonies due to dislodgment during storms 
(i.e., survival was a function of colony size, given its skel-
etal density). Finally, for traits that vary both within and 
among populations (as is the case for the traits in Table 1), 
then a combination of the two approaches is feasible (e.g., 
dynamically following Symbiodinium density within popu-
lations as part of state y, where the maximum density might 
vary with species).

How physiological characteristics are described in the 
function of the IPM depends on the research question and 
the extent of the basic knowledge of the physiology of 
the study species. The IPM is flexible enough to handle 
many different configurations of the pathways by which 
physiology affects growth, survival, or fecundity, and has 
the potential to consider the effects of the host and Sym-
biodinium (including genetic variation in these algae) 
independently.

Some considerations in applying IPMs to corals

There are several issues that need to be considered when 
applying IPMs to corals, but these issues have solutions 
that render IPM approaches highly attractive for corals. 
As with previous coral matrix models (Hughes and Tan-
ner 2000; Fong and Glynn 1998, 2000; Edmunds and Elahi 
2007), the growth function g(x,y,θ(t)) in a coral IPM needs 
to also account for fragmentation and fission that occur 
in many coral species. The implication is that the growth 
function will have to allow for negative growth, and the 
individuals (ramets) arising from fragmentation will have 
to be added to n(y,t + 1).

Another particularly important issue to consider is the 
spatial scale at which inferences regarding winning and 
losing corals are to be made in relation to the spatial scale 
of larval dispersal. This determines whether a population is 
closed (e.g., where input into the local population is linked 
directly to reproductive output of the population) or open 
to immigration from other sources (where local recruitment 
is uncoupled from local reproductive output). The extent to 
which a population is open or closed to larval input from 
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other populations will determine whether fecundity needs 
to be estimated, and how local fecundity is linked to local 
recruitment. Previous applications of IPMs to plants and 
ungulates have not included dispersal, so the study popula-
tions were considered “closed.” In contrast, at the spatial 
scale of a local coral reef (i.e., ≤20 km [Mittelbach et al. 
2001]), or a typical coral field study, most coral popula-
tions might be considered “open,” or at least partly open, to 
immigration of larvae from other nearby reefs.

Most previous applications of matrix models to coral 
populations assumed that recruitment into the popula-
tion was uncoupled from fecundity (Hughes and Tanner 
2000; Edmunds and Elahi 2007). In such cases, the pro-
jection matrix omitted fecundity and just included transi-
tions between size classes (i.e., survival and growth) with 
recruitment included as a constant (Box 1), whose value 
is determined empirically in the field, and can be space-
dependent (Roughgarden et al. 1985). Madin et al. (2012a, 
b) applied IPM to both open and closed coral populations 
(see also Box 1). In summary, in a closed population, the 
fecundity kernel needs to be estimated; in an open popu-
lation, the fecundity kernel is replaced by the recruitment 
kernel, which describes the number of recruits of a given 
size into the population. Importantly, the IPM framework 
can describe a “semi-open” population with emigration 
and immigration (Coulsen 2012), although this adjust-
ment increases the quantity of data required for the model. 
Ideally, some estimate of local larval retention should be 
obtained (see Burgess et al. 2014 for more details).

Obtaining data for an IPM

To prepare an IPM and use it for the purpose we propose, 
it is necessary to (1) identify the traits that contribute most 
to coral growth, survival, and reproduction; (2) describe 
functions relating such traits to growth, survival, and repro-
duction, as well as their environmental dependencies; and 
(3) calculate λ and evaluate how sensitive it is to changes 
in the parameters describing the relationships between 
traits and vital rates (e.g., Box 1, Online Supplementary 
Material 2; see supplement of Ellner and Rees 2006 for 
another example with R code). In many cases, fundamen-
tal principles of biology or the basic biology of the Scler-
actinia and their Symbiodinium symbionts can be used to 
inform the choice of proximal traits that are informative 
with regard to variation in growth, survival, and reproduc-
tion, and whether traits vary across populations or species, 
or vary continuously within populations. For instance, 
the size of coral colonies, which varies among individu-
als, is a critical feature determining whole-colony fecun-
dity (Hall and Hughes 1996), the probability of dislodge-
ment during storms (Denny et al. 1985; Massell and Done 
1993; Madin and Connolly 2006), and the mass transfer 

of key metabolites that can affect the availability of ener-
getic resources required for reproduction (Patterson 1992; 
Hoogenboom and Connolly 2009). Likewise, it is becom-
ing increasingly clear that genetic variants of Symbiodin-
ium hosted by different individuals, populations, or species 
of corals have important roles in determining the fitness of 
the holobiont (Putnam et al. 2012). As we describe above, 
incorporating into IPMs the physiological consequence for 
the holobiont of hosting multiple, dissimilar, or changing 
combinations of genetically distinct Symbiodinium spp. is 
an important research objective in order to realize the full 
potential of these tools. Currently, this objective is beyond 
the scope of what can be accomplished with the state of the 
empirical and theoretical literature.

Obtaining the data in the field necessary to support an 
IPM approach requires an effort similar to that necessary 
to monitor permanent areas of reef (Hughes 1996; Bur-
gess 2011; Bruno et al. 2011; Coulson 2012). One critical 
difference in comparison with much of the contemporary 
monitoring efforts on coral reefs is that the fate of indi-
vidual colonies needs to be recorded, rather than changes 
in percent cover of species or groups of species. Monitor-
ing individual colonies is inherently more time-consum-
ing than measuring area (or percentage cover), because 
it requires censusing individuals at two or more points in 
time. Furthermore, delineating colonies (especially indi-
vidual ramets belonging to a clonal genotype [a genet] that 
reflect fragmentation rather than sexual recruitment) will 
be more difficult for some species (e.g., Acropora cervi-
cornis and Porites irregularis) than others (e.g., Orbicella 
[formerly Montastraea annularis complex, and Acropora 
hyacinthus). Indeed, the scarcity of demographic studies on 
corals exists, in part, because of the difficulty in attributing 
changes in colony size to growth, fusion, fission, recruit-
ment, and partial mortality at the data collection stage. In 
a practical sense, the utility of applying IPMs to corals 
will be limited to some extent by the growth form of the 
study species, which influences how data collected in the 
field (such as circumference, length, height, and 2D surface 
area) relate to physiologically relevant metrics of size (such 
biomass).

Analysis of the IPM: what can an IPM tell us?

Once each element of the IPM kernel has been defined, 
numerical representation of the kernel provides a matrix of 
conversion from state(s) x to state(s) y that can be treated 
in a manner analogous to a Leslie matrix (e.g., Easterling 
et al. 2000; Ellner and Rees 2006, 2007; Rees and Ellner 
2009; Coulson 2012). Specifically, after discretizing the 
continuum of possible states into bins of size ∆x and ana-
lyzing the kernel across the matrix of all possible combi-
nations of x and y (defined at the midpoints of their bins), 
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the resulting matrix of k(x,y,θ(t))∆x represents the transi-
tion matrix for each time step. The leading eigenvalue (λ) 
of this matrix then is the population growth factor, the 
corresponding right eigenvector v is the vector of size- or 
physiological state-specific reproductive values, and the 
corresponding left eigenvector w is the stable population 
phenotypic distribution. See Online Supplementary Mate-
rial 2 for a detailed description of this analysis. The eigen-
value and eigenvectors can be interpreted in this way under 
the assumption that the population has reached a stable age/
size/phenotype distribution.

Rather than using λ to evaluate “what if” scenarios 
(Crone et al. 2011), or to make projections into the future 
(i.e., as in traditional matrix models [Hughes and Tanner 
2000; Edmunds and Elahi 2007]), the most useful infor-
mation that an IPM reveals is how changes in the relation-
ship between physiology and performance (e.g., survival, 
growth, and fecundity) influence long-term population 
growth rate (at low density). This is done by perturbing the 
model to examine how model predictions vary as model 
parameters are altered, with these procedures termed sen-
sitivity analysis (perturbations in absolute units; dλ/dpi for 
each parameter pi, given by v(y1)w(y2)/⟨v, w⟩ for sensitiv-
ity to the transition from state y2 to state y1) and elasticity 
analysis (perturbations in proportional units; pidλ/(λdpi), 
given by k(y1, y2)v(y1)w(y2)/(!⟨v, w⟩) for sensitivity to the 
transition from state y2 to state y1; Caswell 2001).

Perturbation analysis in previous matrix models or IPMs 
in other systems suggests that the patterns of variation in 
the demographic parameters contributing to λ are likely to 
be more complex (e.g., Franco and Silverton 2004) than the 
simple classification of corals into a few dimensions (e.g., 
Darling et al. 2012, 2013). In other words, two coral spe-
cies with similar mean colony growth rates, for example, 
may have very different contributions of survival, growth, 
and fecundity toward their overall λ. A demographic 
approach to link variation in continuous traits to ecologi-
cal success allows for an assessment of whether species 
with similar mean trait values have different population 
growth rates. Furthermore, some mean trait values related 
to competitive ability or stress tolerance, for example, may 
be different between two species, but make a similar rela-
tive contribution toward λ in both species (Franco and Sil-
verton 2004; Coulson et al. 2005). Previous analyses on 
Soay sheep and Yellowstone wolves, for example (Coul-
son et al. 2010, 2011), show that a wide range of popula-
tion responses is possible depending on which parameter 
is perturbed. Furthermore, depending on which parameter 
is influenced by environmental change, almost any type of 
population change can occur. With Yellowstone wolves, 
for example (Coulson et al. 2011), the population growth 
rate was more sensitive to changes in the shape and varia-
tion in the growth and trait inheritance function than of the 

survival and recruitment function. Furthermore, altering 
the mean environment had greater population-level con-
sequences than changing the variability in environmental 
conditions. Sensitivity and elasticity analyses can be more 
useful at informing management decisions because, as 
opposed to the predictions of population numbers that try 
to forecast the future, such analyses identify which demo-
graphic processes are most important to the future, and 
therefore where management efforts might be most effec-
tive (Crouse et al. 1987; Crone et al. 2011).

IPMs allow questions like “How are population dynam-
ics influenced by reductions in calcification rate” to be 
addressed (e.g., Madin et al. 2012b; Box 1), which clearly 
is relevant to evaluating the ecosystem-level consequences 
of OA. Reductions in calcification rate can reduce skeletal 
density and increase the vulnerability of larger colonies to 
dislodgment during storms (Madin et al. 2012b). Addition-
ally, depressed calcification also reduces colony growth 
rates, which in turn reduces survival and reproductive rate, 
since colonies will be smaller, less fecund, and remain in 
more vulnerable size classes for longer than under normal 
growth rates (Madin et al. 2012b).

Codifying the construct and future research

We do not present novel theory or methods, but instead 
advocate the application of emerging quantitative 
approaches from other systems (Crone et al. 2011; Coul-
son 2012) to scleractinian corals. We have been motivated 
in this effort by the striking changes that have taken place 
on tropical reefs, specifically leading to the widespread 
reduction in cover of scleractinian corals (Bruno and Selig 
2007; Déath et al. 2012), as well as reductions in coral lin-
ear extension, potentially as a consequence of increased 
seawater temperature and OA (Déath et al. 2009). These 
changes have, in part, fueled a growing emphasis on iden-
tifying the winners and losers among the coral fauna on 
contemporary and future reefs in warmer and more acidic 
seas (Fabricius et al. 2011). This emphasis has been char-
acterized by limited progress in evaluating the causal basis 
of ecological success or failure among coral taxa (Loya 
et al. 2001), and therefore provides a compelling context 
within which new approaches can be proposed. It is widely 
accepted that “weedy” corals will fare better than “non-
weedy” corals on the reefs of tomorrow (Knowlton 2001), 
and that thermal resilience will be critical for survival in a 
warmer future (Brown and Cossins 2011; Edmunds et al. 
2014). These traits, however, have not been evaluated in the 
context of impacts on long-term demography such as the 
population growth factor λ, nor have they been evaluated 
for relative importance against one another. We advocate 
the application of a demographic approach, where IPMs are 
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just one example [see de Roos and Persson (2012) for other 
examples linking individual-level process to population 
dynamics] that couple trait-based analyses to demographic 
approaches for scleractinian corals, and suggest it can serve 
as an effective template for further research. We do not 
imply this is the only template that can advance studies of 
the causal basis of winning and losing among scleractin-
ian corals on contemporary reefs. Rather, we propose that a 
demographic approach is essential to overcome the impasse 
to progress in coupling organismic performance to popula-
tion success under future climate change. Given the daunt-
ing prospect of collecting the empirical data necessary to 
prepare IPMs for reef corals, it is clear that properly under-
standing the mechanistic basics of future coral community 
structure remains difficult and represents a topic where 
shortcuts are unlikely to reveal profoundly useful discover-
ies. Coral reef biologists will need to rise to this challenge 
in order to make robust progress toward understanding the 
future of coral reefs. Such progress has been clearly dem-
onstrated in other biological systems, and there is reason to 
expect this success can be transferable to coral reefs.

We hope that by identifying the lack of existing data as 
an impediment to illustrating our proposed framework with 
an empirical example, we can emphasize that there is much 
work to be done in the future. To advance a demographic 
approach, we recommend that experimental investigations 
of scleractinian corals should focus on three themes:

I. Given the complexity of the hierarchical studies we are 
advocating, it will be increasingly important to focus 
initial efforts on coral species for which comprehen-
sive data can be obtained. The construction of multi-
factorial analyses of response variables coupled to λ 
is exceptionally challenging and would benefit from a 
major research initiative supported through different 
laboratories. The judicious selection of study species 
may facilitate access to a large quantity of legacy data 
that could accelerate progress in the construct illus-
trated herein. As model species become better studied, 
the taxonomic breadth of the analyses can be expanded 
to test other species for traits favoring greater capac-
ity to respond in favorable ways to environmental chal-
lenges.

II. Our perusal of the literature in support of Step 1 of this 
paper underscored the difficulty faced with legacy data. 
Some of the limitations associated with these data can 
be solved by careful attention to measurement units 
and appropriate normalization. We have found data on 
a percentage scale among the most difficult to combine 
in synthetic analyses, and for this reason discourage 
the use of this scale. Associated with the quality of data 
that can be mined from legacy studies is the problem 
of accessing records, and we therefore recommend 

the establishment of a global open-access database for 
coral physiological data (e.g., www.coraltraits.org).

III. We believe the approach we advocate has the potential 
to advance the identification of demographically suc-
cessful taxa among the scleractinian fauna of contem-
porary coral reefs. This process is critical if we are to 
understand in what form the reefs of the future will 
exist, and what functional attributes will characterize 
the ecological goods and services provided by these 
ecosystems. The potential of this approach will only be 
realized if physiological studies are designed with an 
eye to inform the causal basis of demographic rates.

Box 1

Elements of an IPM for corals

Here, we provide an example functional form for fitting 
data to construct a coral IPM. This example is included 
for illustration, and the exact functional form of the IPM 
might vary with the coral and environmental factor(s) 
under consideration. First, we indicate how a basic coral 
IPM can be constructed for a stable environment, and then 
indicate how this model might extend to include a variable 
environmental factor. In Electronic Supplementary Mate-
rial 2, we indicate the numerical tools for analyzing such 
an IPM.

Basic IPM

A coral IPM requires data relating colony size in 1 year 
to size (through growth, stasis, or shrinkage) and survival 
probability and contribution of offspring to the popula-
tion in the following year (Eq. 2). Growth and mortality 
relationships can be calculated by measuring survival and 
changes in colony size in consecutive years. Growth is cap-
tured best with a power function because it is multiplica-
tive (Fig. 3a), which also means that the IPM will operate 
more effectively on log-transformed size data, resulting in 
a linear function for the probability of growing from x to y 
during the year:

Size-independent survival processes can be captured 
as probabilities with error, b + ε (dashed line, Fig. 3b), 
whereas size-dependent survival processes can be captured 
as a logistic function (solid curve, Fig. 3b). Combining the 
two gives

g(x, y) =
1

σ
√

2π
e

−(y−(mx+c))2

2σ2

s(x) = (b + ε) logit−1(mx + c + ε).

http://www.coraltraits.org
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while colony fecundity is typically a function of size (i.e., 
number of polyps; Hall and Hughes 1996), many coral spe-
cies are broadcast spawners, and so contributions to the 
recruitment from inside and outside the population are dif-
ficult to estimate. If modeling the population as an open 
system where recruitment is constant independent of the 
local population, the IPM intrinsic growth rate (λ) meas-
ured in the absence of this recruitment will indicate popula-
tion decline, because the population has no intrinsic capac-
ity to sustain itself. This rate of population decline can be 
used as a common currency when comparing environmen-
tal change scenarios. However, if the outside recruitment 
rate q can be estimated and/or expected to be associated 
with environment, then the population can be projected 
through time until it reaches a stable growth factor and size 
distribution for different environmental scenarios, using

Then, the relative cover (i.e., the sum of colony areas) 
of populations for different scenarios can be contrasted, 
providing another common currency. This relative cover 
approach is problematic, because it compares populations 
that are limited by recruitment, but does not incorporate 
density-dependent processes, such as competition.

r(y) = q if y ≤ recruitment size

When modeling the population as a closed system 
where all recruitment depends on the local popula-
tion size, the IPM intrinsic growth rate is a currency 
for the propensity for the populations to recover from 
low abundance such that density-dependent factors are 
negligible (e.g., following a storm, bleaching episode, 
or COTS outbreak). This definition of λ is equivalent 
to population (or engineering) resilience (Madin et al. 
2012a, b) and makes no assumptions about the onset to 
density-dependent processes as space on the reef satu-
rates. Closed system modeling can be justified if inter-
connected populations all tend to occupy similar habi-
tats and environmental changes operate at scales larger 
than the meta-population, and therefore affect all popu-
lations similarly. In this case, a closed meta-population 
model will provide an approximation for local dynamics. 
Assuming a constant environment, an individual’s con-
tribution to recruitment q (recruits per unit colony area) 
can then be varied until the IPM stable size distribution 
(first eigenvector) best fits the empirical size distribution 
(Fig. 3c, d).

r(x, y) =

{

qx if x > recruitment size and y ≤ recruitment size

0 if x ≤ recruitment size

Fig. 3  Example relationships 
describing the ways by which 
size translates into organismic 
and demographic properties 
required in the preparation of 
an IPM: a growth, b survival, 
c population density, and d 
recruitment
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Once the recruitment parameter q has been estimated, 
the stable population growth factor (λ) can be calculated. 
In reality, recruitment within most coral populations will 
lie between the extremes of complete independence or 
dependence on local demography. Altering the recruitment 
function accordingly can model such a system where the 
data are available for parameterization.

Integrating environmental effects on physiological traits

Environmental variables (e.g., ocean pH) that influence 
physiological traits (e.g., calcification and cellular chemis-
try) can be manipulated experimentally to determine their 
effects on different demographic rates (e.g., growth, mortal-
ity, and fecundity). In some cases, the effect of environment 
on demographic rates can be estimated mechanistically 
(e.g., storm intensity on mechanical survival probability, 
Madin and Connolly 2006). Mechanistic effects are pref-
erable, because they can be expected to operate similarly 
in novel environments (i.e., environments not considered in 
manipulative experiments) (Kearney et al. 2010).

For an example, we explore the effects of decreasing 
calcification rates in the future, a physiological trait that is 
responsive to increasing in sea surface temperature (SST) 
and decreasing aragonite saturation state (Ωarag) due to OA 
(Anthony et al. 2008). For brevity, we illustrate the IPM 
approach using one of the scenarios modeled by Madin et 
al. (2012a), in which declining calcification impacts growth 
rate (i.e., material density is not affected, and therefore the 
mechanical integrity of coral skeleton and reef substrate 
is constant). Figure 4a shows how calcification rate is 
expected to change for two existing relationships of calcifi-
cation with SST and Ωarag (Anthony et al. 2008; Silverman 
et al. 2009), at least based on existing estimates of SST and 
Ωarag for future pCO2 stabilization scenarios (Cao and Cal-
deira 2008). Relative changes in future calcification rate are 
applied directly to mean growth probability (i.e., the inter-
cept c in the growth function):

The population growth factor (λ) is plotted for the two coral 
calcification response scenarios as a function of stabilized 
atmospheric pCO2 (Fig. 4b). Confidence intervals (shaded 
bands around the lines) reflect many sources of uncertainty, 
primarily the fitted recruitment parameter q. This coral species 
is predicted to become a “loser” for the red-colored calcifica-
tion response scenario when pCO2 levels reach approximately 
500 ppm; it is predicted to remain a “winner” on average for 
the black-colored calcification response scenario.
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